
Twelve Ways to Fool the Masses When Giving

Performance Results on Parallel Computers

David H. Bailey

RNR Technical Report RNR-91-020

May 9, 1991

Abstract

Many of us ih the field of highly parallel scientific computing recognize that it is often

quite difficult to match the run time performance of the best conventional supercomputers.

This humorous article outlines twelve ways commonly used in scientific papers and pre-

sentations to artificially boost performance rates and to present these results in the "best

possible light" compared to other systems.

The author is with the Numerical Aerodynamic Simulation (NAS) Systems Division at

NASA Ames Research Center, Moffett Field, CA 94035.

Many of us in the field of highly parallel scientificcomputing recognizethat it is often
quite difficult to match the run time performanceof the bestconventionalsupercomputers.
But sincelay personsusually don't appreciatethesedifficulties and thereforedon't under-
stand when wequote mediocreperformanceresults, it is often necessaryfor us to adopt
someadvancedtechniquesin order to deflect attention from possiblyunfavorablefacts.
Here aresomeof the most effectivemethods,asobservedfrom recent scientificpapersand
technicalpresentations:

1. Quote only 32-bit performance results, not 64-bit results.

We all know that it is hard to obtain impressive performance using 64-bit floating point

arithmetic. Some research systems do not even have 64-bit hardware. Thus always quote

32-bit results, and avoid mentioning this fact if at all possible. Better still, compare your

32-bit results with 64-bit results on other systems. 32-bit arithmetic may or may not be

appropriate for your application, but the audience doesn't need to be bothered with such

details.

2. Present performance figures for an inner kernel, and then represent these

figures as the performance of the entire application.

It is quite difficult to obtain high performance on a complete large-scale scientific ap-

plication, timed from beginning of execution through completion. There is often a great

deal of data movement and initialization that depresses overall performance rates. A good

solution to this dilemma is to present results for an inner kernel of an application, which

can be souped up with artificial tricks. Then imply in your presentation that these rates

are equivalent to the overall performance of the entire application.

3. Quietly employ assembly code and other low-level language constructs.

It is often hard to obtain good performance from straightforward Fortran or C code

that employs the usual parallel programming constructs, due to compiler weaknesses on

many highly parallel computer systems. Thus you should feel free to employ assembly-

coded computation kernels, customized communication routines and other low-level code in

your parallel implementation. Don't mention such usage, though, since it might alarm the

audience to learn that assembly-level coding is necessary to obtain respectable performance.

4. Scale up the problem size with the number of processors, but omit any

mention of this fact.

Graphs of performance rates versus the number of processors have a nasty habit of

trailing off. This problem can easily be remedied by plotting the performance rates for

problems whose sizes scale up with the number of processors. The important point is to

omit any mention of this scaling in your plots and tables. Clearly disclosing this fact might

raise questions about the efficiency of your implementation.

5. Quote performance results projected to a full system.

Few labs can afford a full-scale parallel computer -- such systems cost millions of

2

dollars. Unfortunately, the performanceof a codeon a scaled down system is often not

very impressive. There is a straightforward solution to this dilemma- project your

performance results linearly to a full system, and quote the projected results, without

justifying the linear scaling. Be very careful not to mention this projection, however, since

it could seriously undermine your performance claims for the audience to realize that you

did not actually obtain your results on real full-scale hardware.

6. Compare your results against scalar, unoptimized code on Crays.

It really impresses the audience when you can state that your code runs several times

faster than a Cray, currently the world's dominant supercomputer. Unfortunately, with a

little tuning many applications run quite fast on Crays. Therefore you must be careful not

to do any tuning on the Cray code. Do not insert vectorization directives, and if you find

any, remove them. In extreme cases it may be necessary to disable all vectorization with

a command line flag. Also, Crays often run much slower with bank conflicts, so be sure

that your Cray code accesses data with large, power-of-two strides whenever possible. It

is also important to avoid multitasking and autotasking on Crays -- imply in your paper

that the one processor Cray performance rates you are comparing against represent the

full potential of a $25 million Cray system.

7. When direct run time comparisons are required, compare with an old code

on an obsolete system.

Direct run time comparisons can be quite embarrassing, especially if your parallel code

runs significantly slower than an implementation on a conventional system. If you are

challenged to provide such figures, compare your results with the performance of an obsolete

code running on obsolete hardware with an obsolete compiler. For example, you can

state that your parallel performance is "100 times faster than a VAX 11/780". A related

technique is to compare your results with results on another less capable parallel system or

minisupercomputer. Keep in mind the bumper sticker "We may be slow, but we're ahead

of you."

8. If MFLOPS rates must be quoted, base the operation count on the parallel

implementation, not on the best sequential implementation.

We know that MFLOPS rates of a parallel codes are often not very impressive. For-

tunately, there are some tricks that can make these figures more respectable. The most

effective scheme is to compute the operation count based on an inflated parallel implemen-

tation. Parallel implementations often perform far more floating point operations than the

best sequential implementation. Often millions of operations are masked out or merely re-

peated in each processor. Millions more can be included simply by inserting a few dummy

loops that do nothing. Including these operations in the count will greatly increase the

resulting MFLOPS rate and make your code look like a real winner.

9. Quote performance in terms of processor utilization, parallel speedups or

MFLOPS per dollar.

3

As mentionedabove,run time or evenMFLOPS comparisonsof codeson parallel sys-
tems with equivalentcodeson conventionalsupercomputersare often not favorable.Thus
wheneverpossible,useother performancemeasures. One of the best is "processoruti-
lization" figures. It soundsgreat when you can claim that all processorsare busy nearly
100%of the time, evenif what they areactually busy with is synchronizationand commu-
nication overhead. Another useful statistic is "parallel speedup"-- you canclaim "fully
linear" speedupsimply by making sure that the singleprocessorversion runs sufficiently
slowly. For example,makesurethat the singleprocessorversion includessynchronization
and communicationoverhead,eventhough this codeis not necessarywhenrunning on only
one processor.A third statistic that many in the field havefound usefulis "MFLOPS per
dollar". Be surenot to use "sustainedMFLOPS per dollar", i.e. actual deliveredcompu-
tational throughput per dollar, sincethesefiguresareoften not favorableto new computer
systems.

10. Mutilate the algorithm used in the parallel implementation to match the

architecture.

Everyone is aware that algorithmic changes are often necessary when we port appli-

cations to parallel computers. Thus in your parallel implementation, it is essential that

you select algorithms which exhibit high MFLOPS performance rates, without regard to

fundamental efficiency. For example, partial differential equation applications with explicit

linear system solvers typically run at rather high MFLOPS rates on parallel computers.

Unfortunately, such algorithmic changes often result in a code that requires far more time

to complete the solution -- explicit methods, for example, sometimes converge 1,000 times

slower than implicit or multigrid methods. For this reason you must be careful to down-

play your changes to the algorithm, because otherwise the audience might wonder why you

employed such an inappropriate solution technique.

11. Measure parallel run times on a dedicated system, but measure conven-

tional run times in a busy environment.

There are a number of ways to further boost the performance of your parallel code

relative to the conventional code. One way is to make many runs on both systems, and

then publish the best time for the parallel system and the worst time for the conventional

system. Another is to time your parallel computer code on a dedicated system and time

your conventional code in a normal loaded environment. After all, your conventional super-

computer is very busy, and it is hard to arrange dedicated time. If anyone in the audience

asks why the parallel system is freely available for dedicated runs, but the conventional

system isn't, change the subject.

12. If all else fails, show pretty pictures and animated videos, and don't talk

about performance.

It sometimes happens that the audience starts to ask all sorts of embarrassing ques-

tions. These people simply have no respect for the authorities of our field. If you are so

unfortunate as to be the object of such disrespect, there is always a way out -- simply

4

concludeyour technical presentationand roll the videotape. Audienceslove razzle-dazzle
color graphics,and this material often helpsdeflectattention from the substantivetechnical
issues.

Acknowledgments

The author wishes to acknowledge helpful contributions and comments by the following

persons: R. Bailey, E. Barszcz, R. Fatoohi, P. Frederickson, J. McGraw_ J. Riganati, R.

Schreiber, H. Simon, V. Venkatakrishnan, S. Weeratunga, J. Winget and M. Zosel.

